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Abstract — One of the most important factors in radio network
design is path loss — a phenomenon that may be measured us-
ing a variety of techniques, including deterministic, empirical,
machine learning, and deep learning models. Each approach
has its own limitations, such as inability to capture non-linear
interactions, high computational resource demand, and inabili-
ty to reflect changes in environmental conditions, among many
others. The deep learning model has the capacity to recognize
intricate patterns and has been essential in removing those ob-
stacles; therefore, in this study it is used for path loss prediction
in 5G communications in the South Asian region. The model
makes use of long- and short-term memory (LSTM), gated re-
current unit (GRU), convolutional neural network (CNN), and
dense neural network (DNN) approaches to take advantage of all
the benefits that each algorithm provides. The performance of
the proposed strategy was validated by testing it against multiple
state-of-the-art approaches, while relying on the same dataset.
An examination of the relevance of characteristics has also been
carried out to gain a better understanding of the influence of
path loss. A variety of characteristics that are directly relat-
ed to path loss were evaluated, followed by an examination of
how they affect the decision-making process. The results show
a possible solution that can help handle this path loss estimation
for mmWave communication, especially for 5G networks and
beyond.

Keywords — 5G, deep learning, machine learning, mmWave, path
loss

1. Introduction

5G networks use higher frequency and smaller cell sizes,
rendering the issues of signal degradation, fading, and inter-
ference more important [1], [2]. Signal strength is the most
important parameter for maintaining a reliable communica-
tion link and determines throughput. Path loss refers to the
degradation of the electromagnetic signal as it propagates
through a channel [3]. Mathematically, it is the difference
between the transmitting power and the receiving power of
a signal. Knowledge of path loss in a given environment
makes it easier to efficiently plan radio networks [4]. Path
loss measurement can help optimize power usage according
to channel conditions. Additionally, knowledge about the path
loss of a channel may greatly improve the quality of service
and resource allocation.
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There are several methods to measure path loss. The early
methods involve empirical models developed based on data
observed under real-world scenarios [5]. Several parameters
such as distance, frequency, and attenuation factor are taken
into account when developing specific formulas. The models
capture the average path loss value of a channel in a certain
setting. There are several empirical models such as the free
space path loss model [6], the Hata model [7], the Okumu-
ra model [8], the 3GPP TR 38.901 model [9], and the log
distance model [10]. Simplicity is one of the main reasons
behind their widespread use.

They are pretty basic models that require some simple pa-
rameters, like distance, frequency, and some environmental
data that change based on a given setting. Consequently, it is
very easy to modify the model according to environmental
needs. For example, the Hata model can be adopted in ur-
ban, suburban, and rural settings. Its simplicity eliminates the
need for computational resources and makes it an economi-
cal option. Its ease of use and thorough understanding have
led to its adoption as the main foundation of radio network
planning [10].

3GPP has developed one such empirical model, known as
3GPP TR 38.901, keeping in mind the nature of 5G com-
munication and its requirements. However, there are several
major limitations that led to the adoption of other techniques.
One of the major limitations is their rigidity. Although the
models capture some of the environmental parameters, they
cannot reflect a sudden change of a certain parameter. Also,
the models are much more generalized. Consequently, they
cannot truly capture the difference in settings that vary from
one country to another.

The urban setting prevailing in Europe does not necessarily
reflect the conditions that exist in Asia. Therefore, path loss
measurements may not be accurate. Additionally, changes in
some parameters may cause significant changes in path loss
readouts.

In some communication modes, such as vehicular communi-
cation, the parameters change rapidly, making the path loss
models inconsistent in such scenarios. Also, some of the
empirical models require the transmitter and receiver to be
in the line-of-sight setting, which reduces their usability in
non-line-of-sight environments.
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Statistical analysis is another approach that is similar to the
empirical method. Instead of relying on curve fitting based
on real-world data in the empirical method, the statistical
method uses probabilistic and statistical analysis to model
the propagation of electromagnetic waves. Many statistical
methods such as log distance path loss model and log normal
shadowing [11] exist.

One of the major limitations of the method is its inability
to model optical phenomena such as diffraction, reflection,
and scattering. These phenomena are very common in high-
frequency environments, which makes the statistical method
ineffective in high-frequency cases.

Another method of measuring path loss relies on determinis-
tic models [12]. These models make use of electromagnetic
principles to predict the propagation of signals through the
environment based on their interaction with several environ-
mental factors [13]. Instead of the observed values, these
models are developed by simulating the real world environ-
ment. As a result, they are environment-specific and yield
measurements with a higher degree of accuracy.

There are several deterministic models in use. Ray tracing [14]
is the most popular deterministic model. It tracks the rays
from the transmitter to the receiver and finds out how all
the ray components interact with the environment. Several
parameters such as diffraction, scattering, and reflections
are taken into account based on the shape and materials of
a given object. The model is used mainly in urban and indoor
environments.

Ray launching [15] follows a similar principle of simulating
the multipropagation of rays from the transmitter to the re-
ceiver. However, it does not trace each ray, which makes it
faster. It is mainly used where there is a trade-off between
computational resources and accuracy.

It needs to be borne in mind there several other models, such
as the uniform theory of diffraction (UTD) [16] and the finite
difference time domain (FDTD) [17] exist. These, howev-
er, suffer from some disadvantages. The high computational
resource requirement makes them a costly option. Due to
the high computational volume, they require more time for
processing and do not perform accurately in a complex en-
vironment where the parameters change rapidly. The high
dependence on environmental factors makes them very sensi-
tive to small-scale variations.

Another deterministic method that solves the problem is the
parabolic equation method. Unlike the UTD and FDTD, it
allows for wave modeling in one main direction only. The
method greatly reduces the computation load, as it ignores the
backward waves. However, it finds limited use in the near-field
region and, like other methods, it also lacks accuracy when
the parameters change abruptly.

The geometry method is based on the same foundation as the
deterministic model, i.e. it measures path loss by estimating
the interaction of the wave with various environmental factors.
However, the geometry-based method introduces a statistical
method to simulate multipath effects. It is a hybrid method that
utilizes the statistical method while also relying on physical
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accuracy. However, the need for detailed environment data
makes its use complex in larger areas. Also, the computational
complexity is very high in this case.

Today, artificial intelligence has gained greater traction in
every aspect of engineering [18]. Due to its ability to under-
stand complex patterns and make decisions, it is also relied
upon in path loss measurements. Machine learning [19] is
one of the subsets of artificial intelligence. Machine learning
(ML) makes estimations based on previously observed da-
ta [20]. It uses several algorithms to find a common pattern
among the various features that may influence path loss and
makes decisions based on those determinations.

Several algorithms, such as linear regression [21], support
vector regression [22], and decision tree [23] are used. How-
ever, machine learning lacks the ability to capture non-linear
relationships. Deep learning (DL) networks have become
very useful in this regard. It is a subset of machine learning
that has been constructed to mimic the operation of a human
brain [24]. The inclusion of neurons, layers, and activation
functions enables deep learning algorithms to capture non-
linear relationship as well [25].

In this paper, a deep hybrid model is proposed to estimate path
loss. The model consists of long short-term memory (LSTM),
a gated recurrent unit (GRU), a convolution neural network
(CNN), and a dense neural network. The model was trained
using data tailored for the South Asia region. The model
was fed with several parameters, such as distance between
transmitter and receiver, time delay, received power, phase,
azimuth angle of departure, azimuth angle of arrival, elevation
angle of departure, elevation angle of arrival, frequency,
season, phase, and RMS delay spread. The model explores
the three distinct algorithms to take advantage of all of their
functionalities. Along with the estimation, the importance of
the features and their influence on estimating path loss have
been explored.

Table 1 shows the several methods and their limitations in
estimating path loss. It is evident from the table that deep
learning algorithms can estimate path loss more accurately
compared to the deterministic model, and at a lower cost. But
the high data requirement is hurdle affecting its adoption. The
proposed hybrid model may offer a potential solution to the
problem.

Our contributions are as follows.

1) Combining several deep learning algorithms to develop
hybrid models for the estimation of path loss in the South
Asia region. Instead of focusing only on one kind of
algorithm, we have combined several algorithms like
LSTM, GRU, CNN, and DNN to capture both temporal
and spatial dependencies while predicting path loss.

2) Conducting a comparative study benchmarking the solu-
tion against other commonly used algorithms to validate
the performance of the proposed hybrid model.

3) Interpreting the model’s decision-making process by
studying the impact of each feature utilized in the model.

4) Investigating the model’s ability to detect path loss to
boost it in real world scenarios.
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Tab. 1. Comparison of various path-loss models.

Method Advantage Limitation
Empirical Simple and fast Po9r .
generalization
o Very accurate Computationally
Deterministic | capture of several .
. demanding
physical effects
Statistical Scalable Fixed distribution
Geometry Balar.lce betvx{een Need of detailed
physical realism . .
based ) environment info
and efficiency
Machine Ability tq capture Requires large
learnin non-linear amounts of
£ relationship labeled data
Deep learning Very high Computatl(.)nally
accuracy demanding

2. Literature Review

Due to the superior performance of machine learning and
deep learning algorithms in recognizing the relationship
between path loss and various factors, several researchers
have explored different approaches based on these models.

2.1. Machine Learning-based Approaches

Several researchers have used machine learning algorithms
to estimate path loss. While evaluating the best models, al-
most all commonly used algorithms have been tested, but
the best-performing solutions varied depending on a specific
environment. AdaBoost was found to show superior perfor-
mance in tropical regions [26], random forests showed better
performance in the region of uneven terrain attributes [27],
and gradient tree boosting for millimeter wave communica-
tion (mmWave) communication was best suited for indoor
environments [28].

Several researchers adopted numerous performance enhance-
ment steps during the data preparation and training stages,
instead of relying on the algorithm alone. In [29], before mov-
ing on to support vector machine-based model, dimensionality
reduction techniques — such as principal component analysis
— were employed to lower the use of computational resources.
In another work, support vector regression was relied upon to
reduce complexity and training time with different kernels to
find the optimal model [30].

Various machine learning algorithms such as AdaBoost and
random forest were employed to find the best model for
predicting path loss in aircraft cabins [31]. The data expansion
method generating partial data samples using the empirical
approach has also been adopted to achieve further prediction
accuracy improvements. Instead of relying on one specific
algorithm, an ensemble model named voting regression was
proposed. It consisted of k-nearest neighbors (KNN), support
vector regression (SVR), random forest (RF), AdaBoost,
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and gradient tree boosting (GTB) algorithms to improve its
performance [32].

2.2. Neural Network-based Approaches

Due to their ability to capture complex patterns, deep learning
approaches have gained momentum, replacing machine learn-
ing algorithms where the availability of data is not a problem.
Several researchers have also used deep learning-based ap-
proaches to estimate path loss. Artificial neural networks
(ANN) are one of the most commonly used solutions. An
ANN has been used to build path loss prediction models in
corridor environments with varying frequencies [33].

Two types of ANN (multilayer perception (MLP) and radial
basis function (RBF)) were used to model path loss of an ultra
wide-band channel in a mine environment [34]. The model
was designed to focus on the balance between generalization
and precision. In [35], an ANN-based model was adopted
to predict path loss in a multi-wall, multi-frequency indoor
environment. The model is based on MLP and the training of
data follows the backpropagation algorithm.

Instead of simply using ANN, some researchers conducting
data preprocessing and training stages to increase the level
of accuracy. In [36], an ANN-based model was deployed
to predict path loss in urban environments. To optimize the
ANN model and adapt it to a specific problem, an adaptive
differential evolution algorithm named CoDe was used. The
authors of [37] used ANN to predict path loss for very high-
frequency wireless communication. In the study, extensive
analysis has been performed to find the optimal numbers of
input parameters, neurons, activation functions, and learning
algorithms. MLP combined with ADALINE was used to
predict the loss of signal propagation in microcellular urban
environments [38].

Just like it was the case with machine learning approaches,
rather than depending on one type of algorithm, researchers
utilized various algorithms with ANN to build more robust
models. The authors of [39] proposed a two-layer RBF neu-
ral network-based model. It predicted path loss using hybrid
rival penalized competitive learning (RPCL) and recursive
least squares (RLS) algorithms. The model offered better per-
formance compared to empirical approaches such as the data
model. In [40], field strength was predicted using a combina-
tion of an empirical model and an artificial neural network.
The research was based on a dense urban environment.

A hybrid model was developed using the Hata model and
low complexity ANN to predict path loss in [41]. The model
outperformed a high-complexity ANN model by accurately
predicting path loss.

Another approach based on neural networks is the backprop-
agation neural network. In [42], a backpropagation neural
network was used to predict the received power in a subur-
ban scenario, while in paper [43], backpropagation neural
networks were used to build a model that can be useful in
multiple environmental settings (rural, urban, and suburban).
In addition to the ANN and backpropagation neural network,
other types of networks such as the 3-layer wavelet neural
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Fig. 1. Impact of using higher frequencies on cell radius.

network have been developed to predict field strength for
different frequencies [44].

CNN is another prominent deep learning-based approach. It
has been used extensively for model building. In [45], two
convolutional neural networks based on group-16 visual ge-
ometry (VGG) and residual network (ResNet-50) were tested.
ResNet-50 was found to be the best performing solution.
Multitask learning was introduced to further enhance the
accuracy of the predictions made. The introduction of multi-
task learning increased the accuracy rate to 2—4%. In [46],
a CNN-based model was proposed to predict the path loss ex-
ponent of outdoor millimeter wave band channels. In [47], the
authors used CNN to build a path loss prediction model for
high-traffic scenarios. The environment has various obstacles
that greatly impact the communication using high-frequency
bands, and it makes it very difficult for conventional methods
to accurately estimate path loss.

3. Problem Analysis

5G networks use millimeter wave (mmWave) spectrum (24 to
100 GHz) to facilitate higher capacity and ultra-low latency.
The use of higher frequencies allows to support massive
device connectivity. However, using higher frequencies comes
with its disadvantages too. One of the key challenges is the
reduction of cell size. Figure 1 shows the impact of frequency
increment on the radius of the cell. As one may notice, at 20
GHz the cell radius is marginally higher than 70 m. As we
continue to increase the frequency even further, the cell radius
declines sharply. At 100 GHz, the cell radius reduces to less
than 20 m. A lower cell radius will result in frequent cell
switching events that greatly impact path loss and throughput.
When employing the free space path loss model, it can be
seen that higher frequency has a significant impact on path
loss. The free space path loss (in decibels) can be expressed
as:

4
FSLP = 20log,, d + 20log,, f + 201ogy, % RG)
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Fig. 2. Impact of using higher frequencies on path loss.

where d is the separation between the transmitter (Tx) and
the receiver (Rx), f is the operating frequency, and speed
of light is denoted as c. Figure 2 shows the impact of higher
frequencies on path loss.

As the number of steps increases, the path loss also increases.
At 1000 m separation, using the 1.8 GHz frequency results
in a path loss that is closer to 90 dB. Using higher frequen-
cies results in greater path loss. As one may see from the
figure, an operating frequency of 100 GHz causes a path loss
exceeding 120 dB at 100 m separation. Consequently, path
loss estimation is of greater importance in 5G networks, as it
allows for efficient radio network planning.

4. Methodology

The proposed hybrid method consists primarily of LSTM,
GRU, and CNN layers. While LSTM layers are used to cap-
ture temporal dependencies, convolution layers are used for
capturing spatial dependencies. GRU layers are used here
instead of a stack of LSTM layers to reduce computation re-
quirements. In Fig. 3, the working process is shown in the
form of a block diagram. The process involves collection of
the data set, preprocessing, designing, training and evaluat-
ing the model, and then comparing it with baseline ML-DL
algorithms.

The data set has been based on a 5G communication envi-
ronment in the South Asia region, as described in [48]. The
dataset contains multiple data which were obtained through
a simulation relying on NYUSIM, but only those variables
that are closely related to and can be used to predict path loss
are considered in this research. These include the following:
transmitter-receiver (T-R) separation distance, time delay, re-
ceived power, RMS delay spread, and frequency. As far as
frequency is concerned, the dataset is mainly focused on the
high band and the frequencies used here are 7.125, 24.25,
52.6, and 71 GHz.

The process of preparing raw data trainable for the deep
learning model is important, since it is closely related to
finding the best outcome from the prediction model. The
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Fig. 3. Block diagram depicting the methodology used.

cleaner the data set, the better outcome can be obtained from
the prediction model; thus, it is an important phase before
training the model. Two stages are developed:

e Data augmentation is a method through which newer artifi-
cial data can be created. Deep learning algorithms require
a robust larger dataset to build a general model. Data aug-
mentation helps in that regard to create more samples and
increase the size of the dataset. Several methods are used,
such as adding noise and transformation. One of such meth-
ods is bootstrapping. It creates new data using a method
known as “resample with replacement”. The primary rea-
sons for choosing bootstrapping for data augmentation are
its non-parametric character and flexibility. Bootstrapping
not only allows to increase the size of the dataset, but also
helps generalize the model, making it more robust to noise.

e Standardization. As several values have an outlier effect
and fail to follow normal distribution, we have applied min-
max scaler to all variables. This will augment convergence
and prevent any bias caused by the outliers.

T — Tmin
Ttransformed = 5 )
Tmax — Tmin

where x is the value of a feature, x,,;, and x,,., are the
minimum and maximum values of the feature, respectively.

4.1. Proposed Deep Hybrid Model

The deep learning model has to be built in such a way that
it is able to take into account every aspect of the dataset
and can predict accordingly. To build a solution that fulfills
this requirement, a hybrid model turns out to be the best
approach, as it combines different deep learning algorithms.
In this research, a hybrid model is built by combining LSTM,
GRU, CNN, and a dense layer, as shown in Tab. 2. It is well
known that LSTM is a resource-intensive model, as it can
be expanded and may utilize large datasets to predict better
outcomes.

After this layer, GRU is utilized. It is less resource-intensive
and more efficient in producing a better outcome, as GRU is
used for capturing the temporal dependencies.

However, it is much simpler than LSTM, which results in
faster training. After GRU, a dilated convolution layer is used.
It offers a unique feature, as it is able to drop the value after
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Tab. 2. Deep hybrid model parameters.

Layers Units Parameters ﬁiﬁ‘éiﬁiﬂ
LSTM 128 68 608 tanh
LSTM 64 49 408 tanh
GRU 64 24960 tanh
ConvlD 32 4128 tanh
Conv1D 32 2080 tanh
Conv1D 32 2080 tanh
Conv1D 32 2080 tanh
Conv1D 32 2080 tanh
Dense 1 33 ReLU
Total parameters 472 613 (1.80 MB)
Trainable parameters 157 537 (615.38 KB)
Non-trainable parameters 0 (0.00 B)
Optimizer parameters 315 076 (1.20 MB)

a specific range based on the dilation rate. The dilation rate
has been essential for increasing the receptive field of the
layers. The dilation rate has been varied here to capture both
local and global dependencies. Thus, LSTM is used to expand
the values. It is then the task of GRU to concise them, with
dilated convolution taking over to make the prediction precise.

Lastly, a dense layer is used that will be activated based on
the ReLU activation function to predict the final result and
for fast convergence. The Adam optimizer has been employed
for the model with a learning rate of 0.001.

4.2. Baseline ML/DL Models for Comparison

To validate the performance of the proposed deep hybrid
model, its outcomes are compared with those achieved by
several commonly used baseline ML and DL models. In the
following section, a brief analysis of the baseline models is
presented.

e Linear regression (LR). The model estimates path loss by
assuming a linear relationship between path loss and the
input features. The model was chosen for its simplicity and
interpretability. The parameters used include fit intercept
(set to true) and no regularization.

e Polynomial regression (PR). It is an extension of linear
regression. It models non-linear relationships by including
polynomial terms of the input features up to degree 2. The
model is used to capture the non-linear relationship while
maintaining computational efficiency.

e Random forest regression (RFR). It is an ensemble model.
It includes 100 decision trees, with a maximum depth of 10
and a minimum of 2 samples per split. RFR is implemented
because of its ability to capture non-linear relationships
and robustness against overfitting.

e Support vector regression (SVR). The SVR model uses
a kernel of radial basis function (RBF) with C' = 10 and
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e = 0.1. SVR is efficient in handling higher-dimensional
data and can model non-linear relationships through kernel
transformations.

e Artificial neural network (ANN). The model consists of two
hidden dense layers with 64 and 32 neurons, respectively,
both using the ReLU activation function. The model also
incorporates a dropout layer to reduce overfitting. ANN
by far outperforms machine learning-based models in
capturing non-linear relationships.

e Long short-term memory (LSTM). LSTM is used to cap-
ture temporal dependencies of the features. The model
consists of two stacked LSTM layers with 64 and 32 units,
respectively, both using the hyperbolic tangent (tanh) acti-
vation function. A dropout layer is also added to reduce
overfitting. The model helps capture the sequential depen-
dencies that may be overlooked by other approaches.

e Gated recurrent unit (GRU). Like LSTM, GRU also cap-
tures temporal dependencies. The model consists of two
stacked GRU layers containing 64 and 32 units, respective-
ly, each using the tanh activation function. The dropout lay-
er is also used here to reduce overfitting. Although LSTM
shows superior performance in capturing long-term depen-
dencies, GRU can perform better in scenarios with limited
data or where the temporal dependencies are moderately
long.

o Convolution neural network (CNN). CNN is used to capture
spatial dependencies. The model has a stack of six 1D
convolutional layers, each with 32 filters, with a kernel size
of 2. The dilated convolutional architecture is effective in
capturing the spatial characteristics.

5. Result Analysis

5.1. Error Matrix Analysis

The evaluation metrics include mean absolute error (MAE),
mean absolute percentage error (MAPE), and root mean
square error (RMSE). MAE measures the average magnitude
of errors between the predicted and actual values. It can be
expressed as follows:

n

1
MAE:EZ

i=1

Yi — Uil 5 3)
where y; is the actual value and g; is the predicted value.
MAPE measures the average percentage error. It is sensitive

to small actual values. It can be expressed as follows:

Yi — Qz
Yi

100%
MAPE = —= Z @

i=1

RMSE gives more weight to larger errors by squaring them
before averaging. It can be formulated in the following way:

n

Z(yi —9:)2. ©)
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Fig. 4. Comparisons of feature sensitivity.

Tab. 3. Deep hybrid model parameters.

Model | MAE | MAPE | RMSE |
LR 17.0053 | 10.8424 | 21.9414
RF 16.6703 | 10.6766 | 21.6529
SVM 15.0382 | 9.6501 | 19.3329
Polynomial 13.8306 | 8.9102 | 17.7603
LSTM 53798 | 3.4097 | 6.9062
ANN 48112 | 29737 | 6.1571
CNN 42579 | 2.6533 | 5.4366
GRU 4.0791 | 25039 | s.1116
Proposed hybrid | 5 70, | 5 4512 | 5.0747
model

Table 3 presents the performance metrics for all models.
From the table, it is evident that the neural network-based
model outperforms machine learning-based models, as it is
capable of capturing non-linear relationships more effectively
by incorporating spatial and temporal dependencies. The
proposed deep hybrid model achieves the lowest RMSE
and MAE, outperforming all baseline models. The results
indicate that the model is able to successfully integrate several
algorithms to extract their individual qualities in order to
produce the best result.

5.2. Feature Sensitivity Analysis

While building the model, a total of five important variables
were considered to estimate path loss. These variables have
a direct influence on path loss. Studying sensitivity of the
features is important to analyze whether a given model is
biased towards one parameter only, which can severely impact
its accuracy. The five variables, including RMS delay spread,
operating frequency, received power, time delay, and distance
between the transmitter and the receiver were taken into
account to predict path loss.

After analyzing sensitivity of the features, it is evident from
Fig. 4 that the prediction model is more sensitive to RMS
delay spread, operating frequency, and power received by user
equipment (UE). A minor alteration in these variables will
significantly affect prediction values. RMS delay spread is
a crucial parameter for determining path loss, as it indicates
time dispersion of the signal arrival phase, present due to
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Fig. 5. Distribution of predicted values.

the multipath nature of the system. It identifies how spread
out these arrival times are, thus helping manage the signal’s
integrity, especially in high-speed communication systems.
On the contrary, the prediction model proposed in this research
is less sensitive to the T-R separation value — a characteristic
that is desired in the practical world, because this separation
distance can vary significantly, especially when UE is mobile.
If the prediction model relies mostly on this parameter, then
path loss prediction will be significantly impacted for high-
speed users, and the prediction model will predict an arbitrary
value which will eventually lead to a complete failure to
operate efficiently in a real-world scenario.

The sensitivity is quantified using partial derivatives, which

can be written as:
dy
Swar) = 5—, 6
(y,z4) 8231 ( )
where:
S(y,z,) is the sensitivity of output y with respect to x. aaTZ

represents how y varies in response to small changes in z.

5.3. Analyzing the Distribution of the Prediction Values

It is important to know what value is produced from the deep
learning model to make it suitable for real-world scenarios. It
will help to better understand the model and tune its attributes
to produce the best results. The five important parameters
are plotted against predicted and actual path loss values in
such a way that the probability density function (PDF) of the
actual and predicted path loss is explained. The reason behind
this is to see the range of predicted and original values and to
detect any outliers or wrongly predicted values.

From Fig. 5 it is clear that the prediction model has captured
the scenario clearly, as there is no outlier present in the plots.
Moreover, the prediction values are more confined than the
actual values, which not only represents the accuracy of the
prediction model but also shows that it operates consistently in
all the scenarios. As RMS delay spread plays the most crucial
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Fig. 6. Comparison of original and predicted data.

role in terms of impact, the distribution of predicted values
against a specific parameter is more confined than in the case
of actual values. This indicates that deviation from actual data
is not significant. Moreover, the model could analyze every
aspect of the related parameter and make proper justification
before making the prediction.

5.4. Original and Predicted Data Patterns

Figure 6 illustrates that estimations of the prediction model
not only closely align with multiple data points of actual val-
ues but also effectively capture the underlying patterns. For
example, at time step 4514, both T-R separation and RMS
delay spread decrease over time, while the actual path loss in-
creases, and the predicted path loss also reflects the increase.
A similar pattern is observed in steps 4504, 4517, and 4534.
On the contrary, the model also accurately predicts the op-
posite scenarios, as seen in time steps 4507, 4526, and 4539.
These prediction values indicate that the model successfully
recognizes various scenarios and patterns, demonstrating its
prediction accuracy.

6. Conclusions

Since path loss is a critical component of high frequency
wireless communication, in this research a deep hybrid model
was developed to predict path loss for high frequency commu-
nication, specifically for 5G and B5G. By combining LSTM,
GRU, convolutional layers, and dense layers in the model de-
velopment phase and utilizing the distinct characteristics of
each algorithm, optimal results were achieved.

The approach becomes more robust and versatile when all
types of dependencies are combined into one model. The
convolutional layer offers spatial domain information, while
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LSTM and GRU provide the temporal viewpoint of the fea-
tures. Numerous simulations have demonstrated how well the
suggested model predicts path loss and identifies its variance
pattern.

By examining the dependency of the model on various pa-
rameters, the study further investigated the significance of the
individual characteristics in the decision-making process of
the suggested model.

Lastly, this study examines the ability of the hybrid model
to predict actual outcomes by examining each pattern that
might potentially emerge in a real-world environment. The
results clearly demonstrated the model’s potential for use in
real-world scenarios.
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